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ABSTRACT
System combination is an effective strategy to boost re-
trieval performance, especially in complex applications such
as cross-language information retrieval (CLIR) where the
aspects of translation and retrieval have to be optimized
jointly. We focus on machine learning-based approaches
to CLIR that need large sets of relevance-ranked data to
train high-dimensional models. We compare these mod-
els under various measures of orthogonality, and present an
experimental evaluation on two different domains (patents,
Wikipedia) and two different language pairs (Japanese-Eng-
lish, German-English). We show that gains of over 10 points
in MAP/NDCG can be achieved over the best single model
by a linear combination of the models that contribute the
most orthogonal information, rather than by combining the
models with the best standalone retrieval performance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.7 [Artificial Intelligence]:
Natural Language Processing

General Terms
Algorithms, Experimentation

Keywords
Machine translation, cross-lingual retrieval, patent search

1. INTRODUCTION
Cross-Language Information Retrieval (CLIR) needs to

jointly optimize the tasks of translation and retrieval, how-
ever, it is standardly approached with a focus on one aspect.
For example, the industry standard leverages state-of-the-
art statistical machine translation (SMT) to translate the
query into the target language, in which standard retrieval
is performed [4]. Most research approaches start from a re-
trieval perspective [13], or, more recently, from a machine
learning direction [11]. Besides two different tasks, CLIR
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also needs to incorporate different languages and specialized
domains. Thus, techniques that combine specialized systems
into an improved joint system are a promising research direc-
tion. In this paper we show that a linear system combination
can yield improvements of more than 10 MAP/NDCG points
over the best single system, if the combined systems repre-
sent orthogonal information. We focus on machine learning-
based approaches to CLIR that need large sets of relevance-
ranked data to train high dimensional models. The systems
investigated in this paper are systems based on direct use of
SMT technology, systems that apply learning-to-rank tech-
niques, systems based on probabilistic neural networks, and
methods that incorporate domain-specific meta-information
into linear learners. We present various measures of corre-
lation/orthogonality on the level of scores (Pearson’s corre-
lation coefficient and principal component analysis), ranks
(Kendall’s rank correlation coefficient), and retrieved docu-
ments (Jaccard coefficient), and show on two different do-
mains (patents, Wikipedia) and two different language pairs
(Japanese-English, German-English) that the contribution
of a single system to the combination is best determined
by the orthogonality of the information it represents, rather
than by its standalone retrieval performance.

2. RELATED WORK
Various publications have investigated different methods

of system combination for CLIR, including logical opera-
tions on retrieved sets [3], voting procedures based on re-
trieval scores [1], or machine learning techniques that learn
combination weights directly from relevance rankings [14].
The focus of this paper is on machine learning-based CLIR
approaches and on metrics to measure orthogonality be-
tween these systems. Since all of our models require large
sets of relevance-ranked training data, e.g. for learning high-
dimensional cross-lingual word matrices, we cannot use stan-
dard CLIR datasets from CLEF or TREC campaigns that
consist of a few hundred queries with precomputed features.
Instead, we use specialized domains such as patents or Wiki-
pedia where relevance information can be induced from the
citation or link structure.

3. CLIR MODELS
Translation Models. SMT-based models translate a query
and then perform monolingual retrieval. Our first model is
called Direct Translation (DT) and uses the SMT framework
cdec [5] to generate a single best query translation.

A second model is called Probabilistic Structured Queries



(PSQ). The central idea of this approach is to project query
terms into the target language by probabilistically weighted
translations from the n-best list of a full SMT system [17].

In both models, we use the Okapi BM25 scoring scheme
for document retrieval.

Ranking Models. Let q ∈ {0, 1}Q be a query and d ∈
{0, 1}D be a document where the nth vector dimension indi-
cates the occurrence of the nth word for dictionaries of size
Q and D. A linear ranking model is defined as

f(q,d) = q>Wd =

Q∑
i=1

D∑
j=1

qiWijdj ,

where W ∈ IRQ×D encodes a matrix of ranking-specific word
associations [2, 14] . We optimize this model by pairwise
ranking, which assumes labeled data in the form of a setR of
tuples (q,d+,d−), where d+ is a relevant (or higher ranked)
document and d− an irrelevant (or lower ranked) document
for query q. We compare two methods to find a weight
matrix W such that an inequality f(q,d+) > f(q,d−) is
violated for the fewest number of tuples from R.

The first method uses the Vowpal Wabbit (VW) toolkit [6]
to optimize the following `1-regularized hinge loss objective:

Lhng =
∑

(q,d+,d−)∈R

(
f(q,d+)− f(q,d−)

)
+

+ λ||W ||1,

where (x)+ = max(0,m − x) with margin m and λ is the
regularization parameter. VW was run on a data sample of
5M to 10M tuples from R. On each step, W is updated with
a scaled gradient vector ∇WLhng and clipped to account for
`1-regularization.

The second method is a boosting model (BM) that opti-
mizes an exponential loss [16]:

Lexp =
∑

(q,d+,d−)∈R

D(q,d+,d−)ef(q,d
−)−f(q,d+),

where D(q,d+,d−) is a non-negative importance function
on tuples. The algorithm combines batch boosting with bag-
ging over independently drawn bootstrap data samples of
100k instances each from R. In every step, the single word
pair feature is selected that provides the largest decrease of
Lexp. The final scoring function comprises the averaged re-
sulting models. For regularization we rely on early stopping.

Neural Network Models. These models utilize the bilin-
gual compositional vector model (biCVM) of [9] to train
a retrieval system based on a bilingual autoencoder. The
training task is to learn two functions f : Q → Rd and
g : D → Rd, which map a query q and a relevant document
d from a corpus C onto a distributed semantic represen-
tation in Rd. The energy of a query-document pair (q,d)
is defined by Ebi(q,d) = ||f(q) − g(d)||2. Introducing a
large margin m into the noise-contrastive update prevents
the model from degenerating. This results in the following
regularized hinge-loss objective:

H =
∑

(q,d+)∈C

(
k∑

i=1

(
m+ Ebi(q,d

+)− Ebi(q,d
−)
)
+

)
+
λ

2
||θ||2,

where we treat less relevant documents d− as noise samples
during training. θ represents the model parameters.

While [9] train their system exclusively on parallel data on
sentence and document level, we examine different training

setups where we let the architecture learn distributed repre-
sentations from: (a) data based on expert translations (fam-
ily patents) and comparable data (Wikipedia articles on the
same topic in different languages), which we call CVMFM ,
and, (b) generally relevant documents (cited patents, linked
Wikipedia articles), which we refer to as CVMR.

Domain Knowledge Model. The final model (DK ) for
comparison uses highly informative dense features which
capture similar aspects of e.g. patents or Wikipedia arti-
cles. Domain knowledge features for patents were inspired
by [8]: a feature fires if two patents share similar aspects,
e.g. a common inventor, similar number of claims, or com-
mon patent classes in the IPC hierarchy.

For Wikipedia, we implemented features that compare
the relative length of documents, number of links and im-
ages, the number of common links and common images, and
Wikipedia categories (hypernym and hyponym relations).

4. MEASURES OF ORTHOGONALITY
Jaccard similarity coefficient. This coefficient measures
the percentage of overlap between two sets. In the retrieval
setup, we limit our attention to the relevant documents with-
in the top-k results for each query. The overlap metric ex-
pressing the similarity of two candidate systems is then:

J@ksi∩sj =
|retrieved@ksi ∩ retrieved@ksj |
|retrieved@ksi ∪ retrieved@ksj |

,

where retrieved@k are the relevant documents retrieved with-
in the top-k results. We report the pairwise overlap of two
systems si and sj for k = 100.

Pearson’s ρ and Kendall’s τ . The Pearson product-mo-
ment correlation coefficient, Pearson’s ρ, is used to measure
the linear correlation between the scores assigned to each
retrieved relevant document. Kendall’s τ works directly on
the ranks and is insensitive to the absolute score values.

We calculate the metrics on a per-query basis and report
the arithmetic mean. Again, we discard all irrelevant docu-
ments from the retrieved results by assigning them a score of
0. Then for each pair of systems, we select the queries which
have at least 3 data points (i.e. relevant documents) in com-
mon, as 2 data points are always correlated. On average,
this method selects about 75% of the queries for evaluation.

Principal Component Analysis (PCA). PCA is a method
to find the set of n principal components (PC) that span
the subspace of the data where most of the data variance
resides. The straightforward approach would be to identify
all the PCs (or eigenvectors) describing the retrieved data
and to compare them. Our experiments showed that at least
850 PCs are required to capture more than 90% of the data
variance, making a thorough comparison infeasible. Thus,
we opt for a simplified approach where we consider only a
small subset of the most important PCs.

We start by creating |q| × |d| matrices of retrieval scores
for each system, where |q| and |d| are the numbers of queries
and documents. PCA returns the first k principal compo-
nents for each system. By calculating their dot products
we obtain a sequence of values, or a k-dimensional vector,
which describes the difference between the retrieval results
of two candidate systems. To further reduce this vector to a
single value, we report the normalized `2-norm of this vector
of the top-k PC’s similarity. This reflects our requirement



#q #d #d+/q

Patents (JP-EN) train 107,061 888,127 13.28
dev 2,000 100,000 13.24
test 2,000 100,000 12.59

Wikipedia (DE-EN) train 225,294 1,226,741 13.04
dev 10,000 113,553 12.97
test 10,000 115,131 13.22

Table 1: Ranking data statistics: number of queries and docu-
ments, and average number of relevant documents per query.

that only the dimension of variance is of interest:

||PC||@ksi,sj =

√√√√ 1

k

k∑
n=1

〈bn
i ,b

n
j 〉

2

The vector bn
i represents the nth normalized PC describ-

ing the space of relevant documents retrieved by system si,
thus the range of values for ||PC||@k lies between 0 (all or-
thogonal) and 1 (all similar). In this sense, our PCA-based
analysis is directly connected to the notion of orthogonality.
We used k = 10 principal components in our experiments.

5. EXPERIMENTS
Patent Prior-art Search. Our first dataset consists of a
Japanese-English (JP-EN) corpus of patent abstracts from
the MAREC and NTCIR data.1 It contains automatically
induced relevance judgments for patent abstracts [7]: EN
patents are regarded as relevant to a JP query patent with
level (3) if they are in a family relationship (e.g., same inven-
tion), (2) if cited by the patent examiner, or (1) if cited by
the applicant. On average, queries and documents contain
about 5 sentences. Table 1 shows the size of the dataset,
consisting of over 100k queries and nearly 1M documents,
with approximately 13 relevant documents per query.

Wikipedia Article Retrieval. Our second dataset consists
of relevance-linked Wikipedia pages.2 Relevance judgments
were extracted by aligning German (DE) queries with their
English (EN) counterparts (“mates”) via the graph of inter-
language links available in articles and Wikidata. The high-
est relevance level is assigned to the EN mate, the next rel-
evance level to all other EN articles that link to the mate,
and are linked to by the mate. Instead of using all outgoing
links from the mate, only articles with bidirectional links are
used. EN documents are restricted to the first 200 words to
reduce the number of features for BM and VW models. To
avoid rendering the task too easy for literal keyword match-
ing of queries about named entities, title words are removed
from German queries. Data statistics are given in Table 1.

Parallel Data for SMT Models. DT and PSQ require an
SMT system trained on parallel corpora. A JP-EN system
was trained on 1.8M parallel sentences from the NTCIR-7
JP-EN PatentMT subtask. For Wikipedia, we trained a DE-
EN system on 4.1M parallel sentences provided by WMT3.

System Combination. We reapply the VW ranking ap-
proach described in Section 3 on dev set data for system
combination. This method shows stable gains over three dif-
ferent IR-metrics: the precision-based MAP [11] and NDCG

1www.cl.uni-heidelberg.de/boostclir
2www.cl.uni-heidelberg.de/wikiclir
3www.statmt.org/wmt11/translation-task.html

models MAP NDCG PRES

P
a
te

n
ts

(J
P

-E
N

)

DT 0.2554 0.5397 0.5680
PSQ 0.2659 0.5508 0.5851
VW 0.2205 0.4989 0.4911
BM 0.1730 0.4335 0.5431

CVMFM 0.2504 0.5399 0.6104
CVMR 0.1767 0.4229 0.6121

DK 0.2203 0.4874 0.5171

W
ik

ip
e
d

ia

(D
E

-E
N

)

DT 0.3678 0.5691 0.7219
PSQ 0.3642 0.5671 0.7165
VW 0.1249 0.3389 0.6466
BM 0.1386 0.3418 0.6145

CVMFM 0.1467 0.3326 0.5584
CVMR 0.1686 0.3515 0.6178

DK 0.1824 0.3393 0.4937

Table 2: Test results for standalone CLIR models using direct
translation (DT ), probabilistic structured queries (PSQ), sparse
ranking model (VW ), sparse boosting model (BM ), composi-
tional vector model trained on parallel/comparable documents
(CVMFM ) and on all relevant documents (CVMR), and dense
domain knowledge features (DK ).

[10], where the latter considers relevance levels, and the
recall-oriented PRES [12]. All scores were computed on the
top 1,000 retrieved documents.

Results. Table 2 shows the performance of single retrieval
systems according to MAP, NDCG, and PRES. SMT-based
CLIR-methods clearly outperform all others. Only on spe-
cialized domains like patent-prior-art-search and by training
on very clean data (expert translations), the neural network-
based CVMFM model is competitive. On the task of Wikipe-
dia article retrieval, SMT-based methods outperform other
approaches by a large margin.

Our hypothesis is that rather than combining the sys-
tems with the best standalone retrieval performance, the
best overall system is gained by combining systems that
are least similar and contribute orthogonal information to
the combination. Table 3 lists all possible pairwise system
combinations, together with their retrieval performance and
their orthogonality/correlation.

An inspection of the patents in Table 3 shows that all
measures of orthogonality/correlation capture the high sim-
ilarity of the two SMT-based methods, DT and PSQ. Com-
bining these two models results only in a small improve-
ment in retrieval performance. Similar relations are found
for all pairs of systems from same groups: ranking-based
approaches such as VW and BM or neural network ap-
proaches such as CVMFM and CVMR are similar accord-
ing to all measures of orthogonality/correlation, and lead to
small improvements in retrieval performance in combination.
Picking the least similar systems among the four groups, ir-
respective of their standalone retrieval performance, yields
much higher improvements in combination. This is very pro-
nounced for the DK system that is orthogonal to all other
models. The biCVM-models also seem to contribute new
information, where the gains are mostly higher for combina-
tions with CVMR despite its lower performance as a stan-
dalone model compared to CVMFM . The last row in the
Patents section presents the best performing combination of
the four groups’ systems, showing that the improvements by
orthogonal combinations add up.

On Wikipedia data, shown in the lower part of Table
3, we find similar relations. The lower similarity between
CVMR and CVMFM can be explained by training data dif-



combination MAP NDCG PRES J ρ τ ||PC||
Patents (JP-EN)

PSQ + DT L.2707 .5578 .5941 .7318 .7488 .7591 .4717
PSQ + VW .2912 .5862 .6286 .5077 .4475 .5387 .2590
PSQ + BM L.2661 .5611 .6257 .5358 .4964 .5413 .2541

PSQ + CVMFM .3071 .6105 .6808 .5528 .4336 .5154 .2359
PSQ + CVMR .3095 .6140 .7059 .4666 .3139 .3806 .2342

PSQ + DK .3554 .6560 .7320 .3893 .2001 .3081 .1018
DT + VW .2799 .5742 .6095 .5345 .4682 .5574 .3129
DT + BM L.2523 L.5472 .6114 .5485 .5041 .5537 .2707

DT + CVMFM .3068 .6108 .6804 .5357 .4109 .5036 .1470
DT + CVMR .3084 .6139 .7071 .4560 .3082 .3730 .1651

DT + DK .3515 .6530 .7295 .3870 .2026 .3084 .1147
VW + BM .2389 .5324 .5985 .4802 .4139 .4899 .2163

VW + CVMFM .2923 .5970 .6623 .4729 .3880 .4832 .2380
VW + CVMR .2883 .5983 .6912 .3853 .2850 .3584 .2237

VW + DK .3283 .6366 .7104 .3677 .1942 .2998 .0890
BM + CVMFM .2739 .5708 .6490 .4929 .4018 .4607 .3047
BM + CVMR .2402 .5222 .6630 .4290 .3197 .3694 .3567

BM + DK .3083 .6167 .7092 .3461 .1627 .2500 .1454
DK + CVMFM .3388 .6443 .7493 .3667 .1931 .2919 .1379
DK + CVMR .3169 .6241 .7487 .3217 .1439 .2133 .1505

CVMFM+CVMR
L.2529 L.5407 .6608 .5787 .5149 .5098 .5358

PSQ+VW
.3834 .6860 .7804 – – – –

+CVMR+DK

Wikipedia (DE-EN)

PSQ + DT .3724 .5758 .7258 .8445 .8535 .8110 .7202
PSQ + VW L.3623 .5935 .7857 .4092 .2630 .2452 .3054
PSQ + BM .2908 .5106 L.7207 .4956 .4224 .3949 .2850

PSQ + CVMFM .3718 .5840 .7467 .4017 .2866 .2923 .2061
PSQ + CVMR .3843 .6006 .7888 .3841 .1299 .1376 .1298

PSQ + DK .3894 .6110 .7772 .3309 .0617 .1207 .0221
DT + VW L.3714 .5997 .7888 .4042 .2551 .2406 .2985
DT + BM .2993 .5170 L.7243 .4899 .4119 .3894 .2965

DT + CVMFM .3770 .5873 .7521 .3926 .2711 .2806 .1941
DT + CVMR .3870 .6021 .7911 .3809 .1258 .1345 .1621

DT + DK .4009 .6186 .7814 .3275 .0557 .1168 .0168
VW + BM R.1337 .3559 .6792 .3805 .2831 .2446 .2981

VW + CVMFM .1652 .3922 .6952 .3547 .2492 .2079 .2154
VW + CVMR

R.1663 .3929 .7189 .3618 .1701 .1300 .2890
VW + DK .2239 .4616 .7331 .2930 .0918 .1119 .0202

BM + CVMFM .1024 .3006 L.6093 .3648 .2321 .2064 .2097
BM + CVMR .1315 L.3372 .6546 .3546 .1541 .1371 .2390

BM + DK .1893 .4031 .6669 .2804 .0314 .0772 .0211
DK + CVMFM

L.1856 .4023 .6780 .2803 .0267 .0694 .0141
DK + CVMR .2243 .4455 .7226 .2785 .0339 .0550 .0073

CVMFM+CVMR .1880 .3905 .6652 .3652 .2224 .1986 .2379

DT+VW
.4009 .6352 .8312 – – – –

+CVMR+DK

Table 3: Test results for combined CLIR models (see Table 2).
Jaccard index J@100, Pearson’s ρ, Kendall’s τ , and the PCA-
based ||PC||@10 show correlation/orthogonality of a system pair.
Preceding superscript letters indicate non-significant difference of
the combined system to the Left or Right component at p = .001
using the paired randomization test described in [15].

ferences: the latter expects pairs of comparable documents,
thus we employed the first 200 unfiltered article words as
queries for training. As a result, both models are less sim-
ilar and the combination shows notable gains compared to
the patent task. The similarity measures between VW and
BM on Wikipedia are blurred for an analogous reason: BM
is trained on the full vocabulary, while VW uses correlated
feature hashing to lower the memory footprint [2].

6. CONCLUSION
We presented an empirical validation of the conjecture

that best results in CLIR system combination are achieved
by combining systems that comprise orthogonal informa-
tion. We measured correlation/orthogonality on various lev-
els, and identified the groups of translation-based models ag-
nostic of ranking, direct ranking optimizers unapt for trans-
lation, distributed semantic representations by neural net-

works, and linear learners based on meta-information. We
showed experimentally that combining models from these
orthogonal groups outperforms standalone models or com-
binations of best-performing models.
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